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Table Si. Governmental Partners 

• Army Corps of Engineers 
• California Environmental Protection Agency, Office of Environmental Health Hazard 

Assessment 

• European Chemicals Agency 
• European Joint Research Centre 
• Health Canada 
• L'Institut National de l'Environnement Industriel et des Risques 
• U.S. Food and Drug Administration (National Center for Toxicological Research) 

• U.S. Centers for Disease Control and Prevention, National Center for Environmental Health, 
and Agency for Toxic Substances and Disease Registry 

• U.S. Department of Defense 

• U.S. National Center for Advancing Translational Science 
• U.S. National Institute of Environmental Health Sciences and National Toxicology Program 

• U.S. National Institute for Occupational Safety and Health 
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Table S2: An Illustrative Framework for Evidence Integration Focusing on New Data Types Presented in the NexGen Report. 
This causal determination framework illustrates how evidence integration and inferences about causality could be made using new data types. The left column 
summarizes the prototype results, the middle column presents evidence for causality exemplified by the prototypes, and the right column illustrates how such 
prototypic evidence might be integrated and weighed. The first set of prototypes is unique in that the prototypes have known human health effects and well-
documented public health risks. For these prototypes, the "Evidence Integration" column evaluates how successful new data types were in predicting known 
outcomes (criteria for study selection, evidence integration and causal determination considered here are discussed in DHHS 2014; EPA 2013a; McConnell et al. 
2014; Meek et al. 2014; NRC 2014; Rhomberg et al. 2013). Modifications of the Bradford-Hill criteria (e.g., consistency, coherence, biologic plausibility) 
continued to be useful in the evaluation of new data types. As presented here, confidence in causality ranges from suggestive to likely, largely based on the 
understanding of the biologic context in which new data types are embedded. "Likely" is generally for the limited number of cases where the new data types are 
well anchored to adverse outcomes by a combination of observational and experimental data, and include mechanistic and systems biology understanding. 
Biologic context need not be chemical specific but can be derived from disease-/disorder-specific knowledge or from analogy with related chemicals. In practice, 
much of the new datatypes are anticipated to be suggestive for the near-term and most appropriate for screening and prioritization and, perhaps, limited-scope 
assessments. Of note is that, contrary to traditional approaches, some new approaches can be used to estimate relative potencies or toxicity values in the absence 
of clearly identified hazards. Major assessments are anticipated to be augmented by new data types but, for the near term, continue to be based on traditional 
data. To simplify the table, similar prototypes with shared attributes are aggregated where possible. 

Table S2: An Illustrative Framework for Evidence Integration Focusing on New Data Types Presented in the NexGen 

Report. 

Prototypes 
	

Evidence for Causality 
	

Evidence Integration 
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Tie 
r  3 

Molecular epidemiology 
and clinical studies: 
• Illustrated that new data 

types (when properly 
collected, analyzed, and 
reported) appear to 
provide results 
comparable to robust, 
traditional human data, 
and could be used, when 
linked to mechanistic 
information, to: 
(1) evaluate potential 
hazard posed by 

•Specific pattern alterations in molecular events appear consistently 
and strongly associated with known intermediate events and known 
hazards at environmental exposure levels (EPA 2013b, 2015a; 
McCullough et al. 2014; McHale et al. 2009; McHale et al. 2012; Smith et 
al. 2011; Thomas et al. 2014). Data for tobacco smoke were reported in the 
Gene Expression Omnibus (GEO) or ArrayExpress (AE). Also see Cooper 
et al. (2013). 

•Exposure-dose was measured for benzene and ozone using urinary 
biomarkers and radiolabeled ozone, respectively (Hatch et al. 2014; 
McHale et al. 2009; Thomas et al. 2014). Tobacco-smoke exposures were 
self-reported, substantially increasing uncertainty for exposure-dose- 
response characterization and highlighting the need for accurate exposure 
characterization (EPA 2015a). 

•Dose-dependent alterations are observed in concomitantly collected 

Suggestive to likely: Evidence is consistent, 
coherent, and biologically plausible that the 
observed molecular events are causally related 
to adverse effects. Implications are based on 
comparisons to robust traditional risk 
assessments: 
• For benzene and ozone, identified molecular 

events are likely causally related to known 
adverse outcomes in a dose-dependent 
fashion. Mechanistic links between molecular 
events, intermediate effects, and adverse 
outcomes are well understood. Pharmacologic 
intervention that blocks implicated pathways 
also blocks or ameliorates adverse effects. 

chemicals with no or molecular events and adverse effects, in the range of environmental • In comparison, the molecular data for PAH 
limited traditional data, exposure (benzene and ozone). Some molecular pathways are altered at all are considered suggestive of a causal 
(2) augment traditional concentrations; other molecular and toxicological effects emerge with association between PAH and lung cancer 
assessments, or (3) increasing dose. Molecular patterns that occur consistently across all due to a lack of an observed exposure-dose- 
better inform traditional concentrations appear preferable as biomarkers (EPA 2013b; Hatch et al. response relationship (likely due to 
risk assessment issues, 2014; McCullough et al. 2014; Thomas et al. 2014). uncertainties in exposure characterization), 
such as human •Pharmacological interventions have been shown to modify identified and data quality, analysis, and reporting 
variability and AOPs, and, concomitantly, the incidence or severity of the adverse limitations. Only about 8% of studies in GEO 
susceptibility, cross- outcomes (Cooper et al. 2013; Hatzimichael and Crook 2013; McCullough and AE met study selection criteria. 
species and in vivo-to-in et al. 2014). 
vitro comparisons, 
cumulative risk, and low 
exposure-dose-response 
relationships. 
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•Additional evidence for the involvement of specific pathways in disease is 
provided by identification of naturally occurring human gene variants in 
the AOP network that alter susceptibility and risks (Cooper et al. 2013; 
Hatzimichael and Crook 2013; Moreno-Macias et al. 2013; Schlenk et al. 
2008; Shen et al. 2011; SiIle et al. 2012; Smith et al. 2011; Vawda et al. 

Suggestive vs. likely: In general, molecular 
data alone associated with adverse outcomes 
are expected to be only suggestive or 
inadequate for causal determination. To rise to 
likely, the following are generally necessary: 

2014; Zhuo et al. 2012). 
• 

Adverse outcome pathway (AOP) networks are also disrupted by other 
chemical and nonchemical stressors known to alter the incidence of the 
specific disease/disorder under consideration; thus, AOP networks provide 
a tool for evaluating cumulative risks based on mechanistic commonalities 
(IARC 2012; Smith et al. 2011; R Thomas et al. 2012). 

• Supporting data are provided by multiple molecular epidemiology and 
clinical studies and chronic animal bioassays and coherence with other 

multiple, consistent, high-quality observational 
studies with similar results; understanding of 
the cascade of events between molecular 
events to adverse outcomes, and experimental 
evidence showing that reversal of pathway 
alterations blocks or ameliorates adverse 
outcome; or naturally occurring experiments 
where gene variants alter incidence or 
characteristic of disease. Important variables 
such as experimental paradigm (e.g., in vivo vs. 
in vitro), cell type, tissue type, and species also 
require consideration. Suggestive data are 
likely to be most useful for hypothesis 
generation, discovery, screening and 
prioritization, and potential augmentation of 
traditional data. 

systems biology data (NIH BioSystems: acute myeloid leukemia, lung 
cancer (small cell, non-small cell); Comparative Toxicogenomics 
Database: PAHs and cancer: (EPA 2013a, b): BaP and cancer, ozone and 
respiratory disease). 

•Although species and in vitro differences exist, these examples provide 
consistent, coherent biologically plausible data linking specific omic 
alterations with specific diseases. 

Tie Knowledge mining and •Knowledge mining and meta-analysis discovered associations between Suggestive: Could rise to likely with the types 
r 2  meta-analysis prototype known exposures (biomonitoring) to several environmental agents of supporting data noted above under 

illustrated how large 
searchable databases can 
be used to identify, 
organize, integrate, and 

(e.g., metals and persistent organics chemical) with prediabetes/diabetes 
using the Centers for Disease Control and Prevention's National Health 
Assessment Examination Survey. Human tissue biomarker and clinical 
outcome data are from the same individuals (EPA 2015a; Patel et al. 2012; 

"Suggestive vs. likely." 

Associative data generally most useful for 

analyze existing data in 
an automated 

Patel et al. 2013a). 
• Supporting data are found elsewhere in the literature (NIEHS 2015b; 

hypothesis generation. 

(computerized) fashion to 
discover new insights into 
public health risks. 

Thayer et al. 2012). 
•No systems biology context or AOP is available for data from NHANES. 

Information on biological context is available from the literature but 
currently not easily accessible in high- or medium-throughput approaches 
(Audouze et al. 2013; Inadera 2013). 

•Prototype also explored possible links among site-specific chemical 
exposures, ethnicity, genetic variants, and diabetes risks (Dimas et al. 
2014; EPA 2015a; Patel and Cullen 2012). 
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Short-duration in vivo 
exposure bioassays data 
use in either alternative or 
rodents species is 
illustrated in two 

Short-duration, in vivo exposure bioassays—alternative 
(nonmammalian) species prototype included example zebrafish 

Suggestive to likely for consistent, coherent, 
biologically plausible adverse phenotypic 
outcome data from nonmammalian, vertebrate 

developmental assay results, characterization of thyroid-specific 
mechanisms, and predictive modeling of complex dose-response 
phenomena. Padilla et al. (2012) reported AC5os in a zebrafish 

species. Confidence is generally higher for 

prototypes. developmental assay for 305 chemicals. Potencies for individual chemicals 
evolutionarily conserved processes. 

 
and chemical classes were shown to range over several orders of magnitude 

Suggestive: For transcriptomic changes 
 

(1 nM-80 µM). For certain classes of chemicals, 80-100% of the chemicals 
correlated to adverse outcomes studies and 

in a class tested positive (embryo death or structural defects). Perkins et al. 
coupled to AOPs. 

(2013) illustrated the use of alternative species to help articulate mechanisms 
showing an AOP network for thyroid disruption with example toxicants and 
alternative models applicable to both human and ecological hazard 
assessment. Also discussed are how predictive models coupled to 

Ht gh-content assays with measurable adverse 
outcomes (e.g., zebrafish developmental assay) 
generally have greater evidentiary weight than 

mechanistic understanding can be used to better characterize dose-response 
initiating event assays (e.g., transcriptomic 

(Sipes et al. 2011b), circadian variations (Eisenberg et al. 2008), and 
assays). Some systems biology context is 

exposure window-response relationships (DeWoskin et al. 2014). For more 
needed for limited-scope assessments for 

 
details on alternative species bioassays see Ankley and Gray (2013), Perkins 

et al. (2013), and Villeneuve et al. (2014). 

human risk (e.g., cross-species conservation, 
AOPs). Alternative species outcome data alone 
are sufficient for ecologic risk assessment. 

Short-duration, in vivo exposure bioassays—rodent prototype Cross-species extrapolation and subchronic 
correlated transcriptomic alterations with adverse outcomes, as measurement of indicators introduces 
determined in traditional bioassays for 10 chemicals (Thomas et al. 2011; additional uncertainties as compared to human 

RS Thomas et al. 2012; Thomas et al. 2013c). Consistency of the correlation data discussed above data. Reverse 

between transcriptional changes and adverse effects across different toxicokinetic models are needed to estimate 

exposure periods was also demonstrated (5 days to 13 weeks) (Thomas et al. equivalent human doses. 

2013c). Transcriptional changes appeared at somewhat lower concentrations 
than traditional effects. Transcriptomic studies alone cannot predict specific 
hazards but might be useful to relatively ranking chemical potencies to 
induce biologic alterations that might precede adverse outcomes. In general, 
transcriptomic data require some biologic context (e.g., AOPs) to increase 

confidence of biologic significance. 
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Tie 
r  1 

QSAR and molecular 
docking models are used 
to generate potency 
estimates and, with less 
confidence, hazards. Read- 
across is also considered 
(i.e., filling data gaps for 
data-poor chemicals by 
analogy with structurally 
related, more data-rich 
chemicals). 

QSAR models can predict chemical-specific toxicity values based on 
chemical inherent properties for several data-poor chemicals. 
. Models are developed based on chemical structures and known outcomes 

for data-rich chemicals. 
. Organisation for Economic Co-operation and Development (OECD) is 

harmonizing international use of QSAR hazard models and read-across in 
the OECD QSAR toolbox (OECD 2014, 2015a, b). 

• Often, the consensus of a suite of appropriate models is the preferred 
approach. 

• Often, models better predict potency than specific effects. 
.Issues exist around characterizing the uncertainty in QSAR and related 

read-across approaches and in the transparency of some models [see Ball et 
al. (2014) and Patlewicz et al. (2013)]. 

Suggestive to Likely: TOPKAT Model 
predictions of potency when model is 
appropriate for chemicals evaluated; not 
generally predictive of dose-response for 
specific hazards; does generate a lowest-
observed-adverse-effect level for a subset of 
the data-poor chemicals that meet confidence 
criteria. Additional OECD models and read-
across can improve confidence in hazard 
characterization. 

High-throughput, in 
vitro bioassays and 
virtual tissue models are 
discussed. 

High-throughput in vitro assays based on biological process disruptions 
are interpreted in systems biology and AOP contexts, and associated with 
adverse outcomes (Attene-Ramos et al. 2013; EPA 2015a; Judson et al. 
2014; Tice et al. 2013). Virtual tissue modeling provides additional tools 

for evaluating data-limited chemicals (Knudsen et al. 2013). 

Suggestive: When coupled with understanding 
of the AOP(s). Could rise to likely with the 
types of supporting data noted above under 
"Suggestive vs. likely." 
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